
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Design and Characterization of ECC IP core
using Improved Hamming Code

Arathy S, Nandakumar R

Abstract— Hamming code with additional parity bit can be used for single error correction and double error detection. In conventional

hamming code redundancy bits are interspersed in powers-of-two positions at the transmitter end. At the receiver these redundancy bits

are to be extracted from the powers-of-two positions. In improved hamming code the redundancy bits are placed at the end of data bits.

This eliminates the overhead of interspersing redundancy bits at the sender end and their removal later at the receiver end. Further the

overhead bits involved in the process of calculation of redundancy bits is lower in improved hamming code. This paper describes the

design of a synthesizable Error Correction Codes (ECC) IP core which uses improved hamming code. The design is described using

Verilog HDL, simulated using ModelSim and prototyped in Altera® platform FPGA. Resource utilization and power analysis was done using

Altera® Quartus II. Hardware test results are obtained from Signal Tap Logic Analyzer. To make a comparison between ECC using

conventional hamming code and ECC using improved hamming code Matlab plots are used.

Index Terms— Error Correction Codes, IP core, Power analysis, Resource utilization.

—————————— ——————————

1 INTRODUCTION

 ATA that is either transmitted over communication
channel (e.g. bus) or stored in memory is not completely
error free. Error can be caused by different reasons.

Transmission errors are mainly due to signal distortion or at-
tenuation. For example in a transmission system if the clocks
are not synchronized, then sender and receiver can be out of
synchronisation thereby resulting in error. Storage errors are
mainly due to electromagnetic interference in DRAM memory
cell and bit flipping in magnetic storage devices.

Error detection is the ability to detect errors and error cor-
rection has an additional feature that enables identification
and correction of the errors. Error detection always precedes
error correction. Both can be achieved by having redundant
check bits in addition to data. Original Data is encoded with
the redundant bit(s). New data formed is known as code
word.

Different error correction methods are there. Hamming
code is well known for single error correction and double er-
ror detection[2,4]. In conventional Hamming code redundancy
bits are to be interspersed in powers-of-two positions at the
transmitter end. At the receiver these redundancy bits are to
be extracted from the powers-of-two positions. In improved
Hamming code the redundancy bits are placed at the end of
data bits[1]. This eliminates the overhead of interspersing re-
dundancy bits at the sender end and their removal later at the
receiver end. Further the overhead bits involved in the process
of calculation of redundancy bits is lower in improved Ham-
ming code[1].

The section II of this paper is a tutorial review of conven-
tional Hamming code error correction. The section III de-
scribes the proposed improved Hamming code error correc-
tion. The section IV describes the design methodology of ECC
IP core. The section V describes the comparison of improved
Hamming code ECC and conventional Hamming code ECC.
The section VI describes the simulation result. The section V
describes the implementation results.

2 CONVENTIONAL HAMMING CODE ERROR CORRECTION

Hamming code with additional parity bit can be used for single

error correction and double error detection[2,5]. The principle

behind the Hamming code is the addition of ‘r’ redundancy bits

to ‘n’ data bits. The number of redundancy bits and number of

data bits required for single error correction should satisfy equa-
tion 1.

2r >= n+r+1 (1)

One more redundancy bit is required for single error correc-

tion and double error detection. For example, if the data bit is of
11 bit wide the number of redundancy bits will be 5 for single

error correction and double error detection. The total codeword

width is 16. These five bits are interspersed in data at locations

0,1,2,4,8. The parity bits are calculated according to the equations

derived from the truth table given in table 1.

TABLE 1

TRUTH TABLE

Bit position of data P[3] P[2] P[1] P[0]

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

D

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

P[0] is having value ‘1’ at bit locations 1, 3, 5, 7, 9, 11, 13 and 15.

Therefore P[0] is selected such that there is even parity at these

positions (XXX1 <= 15). P[1] is selected such that there is even par-

ity at positions 2, 3, 6, 7, 10, 11, 14 and 15 (XX1X <= 15). P[2] is

selected such that there is even parity at positions 4, 5, 6, 7, 12, 13,
14, 15 (X1XX <= 15). P[3] is selected such that there is even parity

at positions 8, 9, 10, 11, 12, 13, 14, 15 (1XXX <= 15). P[4] is selected

such that there is even parity at all the bit positions including the

redundancy bits. These parity bits are interspersed in positions 0,

1, 2, 4 and 8. For the calculation of parity bits at positions 1, 2, 4, 8

& 0, even parity checks were performed on 8, 8, 8, 8 & 16 bits re-
spectively. Thus a total of 48 bits are involved in the process of

hamming bits calculation. The codeword format for a sample data

11’b11001100110 is shown in figure 1. Parity bits are shown in

bold format.

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig 1: Codeword Format

This codeword is transmitted or stored in the memory. At the

receiver end, the parity bits are removed. A parity check is done

between the transmitted parity and parity of the received code-

word. The result of comparison determines the nature of error. If

single bit error has been occurred, then a mask will be generated
and the data will be corrected. The error-detection and correction

process in hamming code is as illustrated in table 2.

TABLE 2

ERROR DETECTION AND CORRECTION USING HAMMING

CODE

Received information
including Hamming bits

Status
of parity

check

Conclusion

1100110001100110 00000 No error

1100110001101110 10011
Error at posi-

tion 3

1100010001100110 11100
Error at posi-

tion 12

3 IMPROVED HAMMING CODE ERROR CORRECTION

In improved Hamming code, the redundancy bits are placed
at the end of the data bits. This greatly reduces the overhead
in interspersing the redundancy bits at the sender end and
their removal later at the receiver end. Further the number of
overhead bits involved in the process of calculation of redun-
dancy bits is less[1].

The number of redundancy bits in this method is same as
that for conventional Hamming code for some values of n. But
in some cases, it will be just one more redundancy bit than
needed in the Hamming code[1]. The number of redundancy
bits, ‗r‘ to be appended to n-bit data to obtain single error cor-
rection is according to equation 2.

2(r-1) -1 >= n (2)

For example, if the available space for codeword is only
16 bits, then data bit should be only 10 bit wide and the num-
ber of redundancy bits will be 6 to obtain single error correc-
tion and double error detection. These six bits are placed at
locations 15, 14, 13, 12, 11 and 10. The parity bits are calculated
according to the equations derived from the truth table given
in table 3.

TABLE 3

TRUTH TABLE

Bit position of data P[3] P[2] P[1] P[0]

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

 P[0] is having value ‗1‘ at bit locations 1, 3, 5, 7 and 9.
Therefore P[0] is selected such that there is even parity at these
positions (XXX1 <= 10) [1]. P[1] is selected such that there is
even parity at positions 2, 3, 6, 7 and 10 (XX1X <= 10). P[2] is
selected such that there is even parity at positions 4, 5, 6 and 7
(X1XX <= 10). P[3] is selected such that there is even parity at
positions 8, 9 and 10 (1XXX <= 10). P[4] is selected such that
there is even parity at the bit positions of redundancy bits

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

P[3:0]. P[5] is selected such that there is even parity at all the
bit positions including the redundancy bits P[4:0]. These pari-
ty bits are interspersed in positions 15, 14, 13, 12, 11 and 10.
For the calculation of parity bits, even parity checks were per-
formed on 5, 5, 4, 3, 4 & 16 bits respectively. Thus a total of 37
bits are involved in the process of hamming bits calculation.
The codeword format for a sample data 10‘b1100110011 is
shown in figure 2. Parity bits are shown in bold format.

0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig 2: Codeword Format

This codeword is transmitted or stored in the memory.

At the receiver end, the parity bits are removed. A parity
check is done between the transmitted parity and parity of the
received codeword. The result of comparison determines the
nature of error. If single bit error has been occurred, then a
mask will be generated and the data will be corrected. The
error-detection and correction process in hamming code is as
illustrated in table 4.

TABLE 4

ERROR DETECTION AND CORRECTION USING IMPROVED

HAMMING CODE

Received information
including Hamming bits

Status of
parity
check

Conclusion

0000111100110011 000000 No Error

0000111100110111 100011
Single Error at
position 2

0000111000110011 101010
Single Error at
position 9

4 DESIGN METHODOLOGY

The main blocks include ECC-Encoder and ECC- Decoder –
Corrector.

Block Diagram

Fig 3: Block diagram

The main blocks are encoder, decoder and corrector. Encoder
encodes the input data into a codeword that is either transmit-

ted or stored. The decoder receives the codeword from the
channel or memory. Decoder and corrector are responsible for
error detection and correction.

Design Flow

The encoder takes the 10-bit input data and encodes the mes-
sage into a (10 + 6) bit codeword. The process flow of encoder
is shown in figure 4 .

Fig 4: Encoder process flow chart

The parity bits are calculated as explained in section III.

The calculated parity bits are placed at the end of data bits
thereby reducing the overhead of interspersing redundancy
bits in powers-of-two positions. The process flow of decoder is
given in figure 5.

Fig 5: Decoder process flow chart

Calculation of parity bits

Appending parity bits at the end

of data bits

START

STOP

Encoder

Decoder Corrector

Data In

[9:0]

Reset

Data Out

[9:0]

Codeword

Out

[15:0]

Codeword

In

[15:0]

START

STOP

Data bits from SDRAM

Placing syndrome bits in places of

redundancy bits and sending 16-bit data

to corrector

Syndrome Generation

Syndrome <=check ^ parity

Parity bit

generation

Check bit

generation

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Decoder receives data bits from memory or channel. The
data bits represents the codeword corresponding to the actual
message. Decoder first extracts the redundancy bits(check bits)
from the end positions. The decoder again calculates the parity
bits corresponding to the received data. Decoder compares the
check bits and the parity bits and generates a syndrome. The
syndrome bits are placed at the end of the data replacing the
parity bits. This data is given to the corrector. The process flow
of corrector is given in figure 6.

Fig 6: Corrector process flow chart

The first step of the ECC-Corrector is the extraction of

syndrome bits from the received data. By extracting syndrome
bits, separation of redundancy bits and data bits takes place.
The decoder then compares the syndrome value against val-
ues in the syndrome Look Up Table (LUT). The status of error
depends upon the value of syndrome. All the single-bit errors
are located and corrected. Double-bit errors are detected and
not corrected. The next step in the corrector process flow is the
mask generation and correction. Mask is generated only when
the error is diagnosed as single-bit error. Depending upon the
location of error mask varies. Separated data bits is XORed
with mask to obtain the corrected data. Separate pin is given
for indicating the status of error. Conditions of error output
pins and the status of error is given in table 5.

Table 5

Error Status Table

Error[1] Error[0] Diagnosis

0 0 There is no error on the mes-
sage on the output.

1 0 There was one error on the
codeword the message is
equivalent to the original.

0 1 There are two errors on the
codeword no correction have
been made.

1 1 Not possible.

5 COMPARISON OF IMPROVED HAMMING CODE WITH

CONVENTIONAL HAMMING CODE

The proposed method of error correction has reduced the
computational complexity[1]. The overhead bits involved in
the process of calculation of redundancy bits are lower in im-
proved Hamming code. The table 6 shows the values of over-
head bits for both methods and the calculated percentage re-
duction of overhead bits in the proposed method. Comparison
is done using Matlab plot shown in figure 7.

TABLE 6

COMPARISON TABLE

Fig 7: Comparison Plot

Data bits
Par-
ity
bits

Overhead bits % re-
duc-
tion in
over-
head
bits

Conven-
tional
Hamming
code

Im-
proved
Ham-
ming
code

4 4 19 13 31.57%

8 5 37 27 27.02%

16 6 69 57 17.39%

32 7 138 123 10.87%

Mask Generation and Correction

Syndrome extraction from decoder

output

Error Diagnosis and locating single-bit

error

Comparing the value of syndrome

against values in syndrome LUT

START

STOP

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

In figure 7, comparison of overhead bits in case of conven-
tional Hamming code and improved Hamming code is shown.
Overhead bits are plotted against message width. Upper line
indicates the overhead bits for conventional Hamming code
and the lower line indicates the overhead bits for improved
Hamming code.

6 SIMULATION RESULTS

The simulation result of encoder, decoder with no error, decoder

with single error and decoder with double error are shown in

figure 8 , figure 9, figure 10 and figure 11 respectively. The de-

signed IP core is further prototyped using Altera DE2 FPGA

board[3].

Fig 8: Simulation Result of Encoder

Note on simulation result :

Reset:(clk=1, reset=1, ready = z, enable = z, datain = zzzzzzzzzz,

codeword_val = 0, codeword_out = zzzzzzzzzzzzzzzz)

Encoding:(clk=1, reset=0, ready = 1, enable = 1, datain =

1100110011, codeword_val = 1, codeword_out =

0000111100110011)

Fig 9: Simulation Result of Decoder-corrector with no error

Note on simulation result :

Reset:(clk=1, reset=1, en_decoder = z, codeword_in =

zzzzzzzzzzzzzzzz, message_out = zzzzzzzzzz, message_val = 0,

error_1bit = 0, error_2bit = 0)

Decoding:(clk=1, reset=0, en_decoder = 1, codeword_in =

0000111100110011, message_out = 1100110011, message_val = 1,

error_1bit = 0, error_2bit = 0)

Fig 10: Simulation Result of Decoder with single error

Note on simulation result :

Reset:(clk=1, reset=1, en_decoder = z, codeword_in =

zzzzzzzzzzzzzzzz, message_out = zzzzzzzzzz, message_val = 0,

error_1bit = 0, error_2bit = 0)

Decoding:(clk=1, reset=0, en_decoder = 1, codeword_in =

0000111100110111, message_

out = 1100110011, message_val = 1, error_1bit = 1, error_2bit = 0)

Fig 11: Simulation Result of Decoder with double error

Note on simulation result :

Reset:(clk=1, reset=1, en_decoder = z, codeword_in =

zzzzzzzzzzzzzzzz, message_out = zzzzzzzzzz, message_val = 0,

error_1bit = 0, error_2bit = 0)

Decoding:(clk=1, reset=0, en_decoder = 1, codeword_in =

0000111100110000, message_out = 1100110000, message_val = 1,

error_1bit = 0, error_2bit = 1)

7 IMPLEMENTATION RESULTS

The ECC IP core is tested by using Altera® DE2 FPGA board.
Altera Quartus® II is used to synthesis the design. Signal Tap®
II Logic Analyzer is used to take hardware test result from
FPGA. Resource utilization summary is given in table 7 and
power analysis summary is given in table 8.

TABLE 7

RESOURCE UTILIZATION TABLE

Resource Utilization table summarizes usage statistics for re-

sources including logic elements, registers, I/O pins, memory
blocks, interconnect usage, and fan-out.

RESOURCE USAGE

Estimated Total logic elements 180

Total combinational functions 87

Logic element usage by number of LUT
inputs

 -- 4 input functions 24

 -- 3 input functions 6

 -- 2 input functions 57

Logic elements by mode

 -- normal mode 87

 -- arithmetic mode 0

Total registers 159

 -- Dedicated logic registers 159

 -- I/O registers 0

I/O pins 60

Maximum fan-out node clk

Maximum fan-out 159

Total fan-out 748

Average fan-out 2.44

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

TABLE 8

POWER ANALYSIS TABLE

PARAMETER RESULT

Total Thermal Power Dissipation 113.94
mW

Core Dynamic Thermal Power Dissipa-
tion

0.00 mW

Core Static Thermal Power Dissipation 79.94 mW

I/O Thermal Power Dissipation 34.01 mW

Power Analysis table gives details about the core dynamic

thermal power dissipation, core static thermal power dissipa-
tion, I/O thermal power dissipation and total thermal power
dissipation.

Hardware test result is obtained from Signal Tap Logic Ana-

lyzer. Encoder and decoder-corrector is tested and the result is
given in figure 12 and figure 13 respectively.

Fig 12: Hardware Test Result of Encoder

Codeword_in Data_out

Dataout_

val

Error1bit Error2bit

0000111100110011 1100110011 1 0 0

0000111100110000 1100110000 1 0 1

0000111100110111 1100110011 1 1 0

Fig 13: Hardware Test Result of Decoder-Corrector

The hardware test results tabulated above are subjected to

vis-à-vis comparison for the function table, for verifying com-
pliance.

8 CONCLUSION

This paper describes the design, simulation and characteriza-

tion of synthesizable ECC IP core using improved Hamming
code. This eliminated the overhead of interspersing the redun-
dancy bits at the sender end and their removal at the receiver
end. Further the effort needed in identifying the values of the

redundancy bits is lower. The design was developed using Veri-
log HDL. The proposed design has been tested by implement-
ing the design on Altera DE2 board which uses Cyclone-II de-
vice.

REFERENCES

[1] Kumar, U.K.; Umashankar, B.S.; , "Improved Hamming

Code for Error Detection and Correction," Wireless Pervasive
Computing, 2007. ISWPC '07. 2nd International Symposium on ,
vol., no., 5-7 Feb. 2007
doi: 10.1109/ISWPC.2007.342654

[2] Altera ., ―DDR and DDR2 SDRAM ECC Reference Design‖.
2006.

[3] Altera DE2 Development Board User Manual available
online at
ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.
pdf

[4] W. Gao and S. Simmons, ―A study on the VLSI implementa-
tion of ECC for embedded DRAM,‖ Electrical and Computer
Engineering,2003. IEEE CCECE 2003. Canadian Conf., Vol.
1, pp. 203-206, May 2003.

[5] M. Y. Hsiao, ―A class of optimal minimum odd-weight-
column SEC_DED codes,‖ IBM J.Res. Develop., vol. 14,pp.
395-401, July 1970.

Datain Codeword_out Codeword_val

1100110011 0000111100110011 1

ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf
ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf

