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Abstract— Hamming code with additional parity bit can be used for single error correction and double error detection. In conventional 

hamming code redundancy bits are interspersed in powers-of-two positions at the transmitter end. At the receiver these redundancy bits 

are to be extracted from the powers-of-two positions. In improved hamming code the redundancy bits are placed at the end of data bits. 

This eliminates the overhead of interspersing redundancy bits at the sender end and their removal later at the receiver end. Further the 

overhead bits involved in the process of calculation of redundancy bits is lower in improved hamming code. This paper describes the 

design of a synthesizable Error Correction Codes (ECC) IP core which uses improved hamming code. The design is described using 

Verilog HDL, simulated using ModelSim and prototyped in Altera® platform FPGA. Resource utilization and power analysis was done using 

Altera® Quartus II. Hardware test results are obtained from Signal Tap Logic Analyzer. To make a comparison between ECC using 

conventional hamming code and ECC using improved hamming code Matlab plots are used.  

Index Terms— Error Correction Codes, IP core, Power analysis, Resource utilization.  

——————————      —————————— 

1 INTRODUCTION                                                                     

 ATA that is either transmitted over communication 
channel (e.g. bus) or stored in memory is not completely 
error free. Error can be caused by different reasons. 

Transmission errors are mainly due to signal distortion or at-
tenuation. For example in a transmission system if the clocks 
are not synchronized, then sender and receiver can be out of 
synchronisation thereby resulting in error. Storage errors are 
mainly due to electromagnetic interference in DRAM memory 
cell and bit flipping in magnetic storage devices.  

Error detection is the ability to detect errors and error cor-
rection has an additional feature that enables identification 
and correction of the errors. Error detection always precedes 
error correction. Both can be achieved by having redundant 
check bits in addition to data. Original Data is encoded with 
the redundant bit(s). New data formed is known as code 
word.  

Different error correction methods are there. Hamming 
code is well known for single error correction and double er-
ror detection[2,4]. In conventional Hamming code redundancy 
bits are to be interspersed in powers-of-two positions at the 
transmitter end. At the receiver these redundancy bits are to 
be extracted from the powers-of-two positions. In improved 
Hamming code the redundancy bits are placed at the end of 
data bits[1]. This eliminates the overhead of interspersing re-
dundancy bits at the sender end and their removal later at the 
receiver end. Further the overhead bits involved in the process 
of calculation of redundancy bits is lower in improved Ham-
ming code[1].  

The section II of this paper is a tutorial review of conven-
tional Hamming code error correction. The section III de-
scribes the proposed improved Hamming code error correc-
tion. The section IV describes the design methodology of ECC 
IP core. The section V describes the comparison of improved 
Hamming code ECC and conventional Hamming code ECC. 
The section VI describes the simulation result. The section V 
describes the implementation results.  

 

2 CONVENTIONAL HAMMING CODE ERROR CORRECTION 

Hamming code with additional parity bit can be used for single 

error correction and double error detection[2,5]. The principle 

behind the Hamming code is the addition of ‘r’ redundancy bits 

to ‘n’ data bits. The number of redundancy bits and number of 

data bits required for single error correction should satisfy equa-
tion 1.  

 

2r >=  n+r+1           (1) 

 

One more redundancy bit is required for single error correc-

tion and double error detection. For example, if the data bit is of 
11 bit wide the number of redundancy bits will be 5 for single 

error correction and double error detection. The total codeword 

width is 16. These five bits are interspersed in data at locations 

0,1,2,4,8. The parity bits are calculated according to the equations 

derived from the truth table given in table 1.  

 
TABLE 1 

TRUTH TABLE 

Bit position of data P[3] P[2] P[1] P[0] 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

D 
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7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

11 1 0 1 1 

12 1 1 0 0 

13 1 1 0 1 

14 1 1 1 0 

15 1 1 1 1 

 

P[0] is having value ‘1’ at bit locations 1, 3, 5, 7, 9, 11, 13 and 15. 

Therefore P[0] is selected such that there is even parity at these 

positions (XXX1 <= 15). P[1] is selected such that there is even par-

ity at positions 2, 3, 6, 7, 10, 11, 14 and 15 (XX1X <= 15). P[2] is 

selected such that there is even parity at positions 4, 5, 6, 7, 12, 13, 
14, 15 (X1XX <= 15). P[3] is selected such that there is even parity 

at positions 8, 9, 10, 11, 12, 13, 14, 15 (1XXX <= 15). P[4] is selected 

such that there is even parity at all the bit positions including the 

redundancy bits. These parity bits are interspersed in positions 0, 

1, 2, 4 and 8. For the calculation of parity bits at positions 1, 2, 4, 8 

& 0, even parity checks were performed on 8, 8, 8, 8 & 16 bits re-
spectively. Thus a total of 48 bits are involved in the process of 

hamming bits calculation. The codeword format for a sample data 

11’b11001100110 is shown in figure 1. Parity bits are shown in 

bold format.  

 

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Fig 1:  Codeword Format 

 

This codeword is transmitted or stored in the memory. At the 

receiver end, the parity bits are removed. A parity check is done 

between the transmitted parity and parity of the received code-

word. The result of comparison determines the nature of error. If 

single bit error has been occurred, then a mask will be generated 
and the data will be corrected. The error-detection and correction 

process in hamming code is as illustrated in table 2.  

 

TABLE 2 

ERROR DETECTION AND CORRECTION USING HAMMING 

CODE 

Received information 
including Hamming bits 

Status 
of parity 

check 

Conclusion 

1100110001100110 00000 No error 

1100110001101110 10011 
Error at posi-

tion 3 

1100010001100110 11100 
Error at posi-

tion 12 

3 IMPROVED HAMMING CODE ERROR CORRECTION 

In improved Hamming code, the redundancy bits are placed 
at the end of the data bits. This greatly reduces the overhead 
in interspersing the redundancy bits at the sender end and 
their removal later at the receiver end. Further the number of 
overhead bits involved in the process of calculation of redun-
dancy bits is less[1].  
 

The number of redundancy bits in this method is same as 
that for conventional Hamming code for some values of n. But 
in some cases, it will be just one more redundancy bit than 
needed in the Hamming code[1]. The number of redundancy 
bits, ‗r‘ to be appended to n-bit data to obtain single error cor-
rection is according to equation 2.  
 
2(r-1) -1 >= n          (2) 
 

For example, if the available space for codeword is only 
16 bits, then data bit should be only 10 bit wide and the num-
ber of redundancy bits will be 6 to obtain single error correc-
tion and double error detection. These six bits are placed at 
locations 15, 14, 13, 12, 11 and 10. The parity bits are calculated 
according to the equations derived from the truth table given 
in table 3. 

TABLE 3 

TRUTH TABLE 

Bit position of data P[3] P[2] P[1] P[0] 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

 
 P[0] is having value ‗1‘ at bit locations 1, 3, 5, 7 and 9. 
Therefore P[0] is selected such that there is even parity at these 
positions (XXX1 <= 10) [1]. P[1] is selected such that there is 
even parity at positions 2, 3, 6, 7 and 10 (XX1X <= 10). P[2] is 
selected such that there is even parity at positions 4, 5, 6 and 7 
(X1XX <= 10). P[3] is selected such that there is even parity at 
positions 8, 9 and 10 (1XXX <= 10). P[4] is selected such that 
there is even parity at the bit positions of redundancy bits 



International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013                                                                                  
ISSN 2229-5518 

 

IJSER © 2013 

http://www.ijser.org  

P[3:0]. P[5] is selected such that there is even parity at all the 
bit positions including the redundancy bits P[4:0]. These pari-
ty bits are interspersed in positions 15, 14, 13, 12, 11 and 10. 
For the calculation of parity bits, even parity checks were per-
formed on 5, 5, 4, 3, 4 & 16 bits respectively. Thus a total of 37 
bits are involved in the process of hamming bits calculation. 
The codeword format for a sample data 10‘b1100110011 is 
shown in figure 2. Parity bits are shown in bold format.  

 

0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Fig 2:  Codeword Format 

 
This codeword is transmitted or stored in the memory. 

At the receiver end, the parity bits are removed. A parity 
check is done between the transmitted parity and parity of the 
received codeword. The result of comparison determines the 
nature of error. If single bit error has been occurred, then a 
mask will be generated and the data will be corrected. The 
error-detection and correction process in hamming code is as 
illustrated in table 4.  
 

TABLE 4 

ERROR DETECTION AND CORRECTION USING IMPROVED 

HAMMING CODE 

Received information 
including Hamming bits 

Status of 
parity 
check 

Conclusion 

0000111100110011 000000 No Error 

0000111100110111 100011 
Single Error at 
position 2 

0000111000110011 101010 
Single Error at 
position 9 

4 DESIGN METHODOLOGY 

The main blocks include ECC-Encoder and ECC- Decoder – 
Corrector.  
 
Block Diagram 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3:  Block diagram 

 
The main blocks are encoder, decoder and corrector. Encoder 
encodes the input data into a codeword that is either transmit-

ted or stored. The decoder receives the codeword from the 
channel or memory. Decoder and corrector are responsible for 
error detection and correction.  

 
Design Flow 
 
The encoder takes the 10-bit input data and encodes the mes-
sage into a (10 + 6) bit codeword. The process flow of encoder 
is shown in figure 4 .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Encoder process flow chart 

 
The parity bits are calculated as explained in section III. 

The calculated parity bits are placed at the end of data bits 
thereby reducing the overhead of interspersing redundancy 
bits in powers-of-two positions. The process flow of decoder is 
given in figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5: Decoder process flow chart 
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Decoder receives data bits from memory or channel. The 
data bits represents the codeword corresponding to the actual 
message. Decoder first extracts the redundancy bits(check bits) 
from the end positions. The decoder again calculates the parity 
bits corresponding to the received data. Decoder compares the 
check bits and the parity bits and generates a syndrome. The 
syndrome bits are placed at the end of the data replacing the 
parity bits. This data is given to the corrector. The process flow 
of corrector is given in figure 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig 6: Corrector process flow chart 

 
The first step of the ECC-Corrector is the extraction of 

syndrome bits from the received data. By extracting syndrome 
bits, separation of redundancy bits and data bits takes place. 
The decoder then compares the syndrome value against val-
ues in the syndrome Look Up Table (LUT). The status of error 
depends upon the value of syndrome. All the single-bit errors 
are located and corrected. Double-bit errors are detected and 
not corrected. The next step in the corrector process flow is the 
mask generation and correction. Mask is generated only when 
the error is diagnosed as single-bit error. Depending upon the 
location of error mask varies.  Separated data bits is XORed 
with mask to obtain the corrected data.  Separate pin is given 
for indicating the status of error. Conditions of error output 
pins and the status of error is given in table 5.  

 
 
 
 
 

Table 5 

Error Status Table 

Error[1] Error[0] Diagnosis 

0 0 There is no error on the mes-
sage on the output. 

1 0 There was one error on the 
codeword the message is 
equivalent to the original. 

0 1 There are two errors on the 
codeword no correction have 
been made. 

1 1 Not possible. 

5 COMPARISON OF IMPROVED HAMMING CODE WITH 

CONVENTIONAL HAMMING CODE 

The proposed method of error correction has reduced the 
computational complexity[1]. The overhead bits involved in 
the process of calculation of redundancy bits are lower in im-
proved Hamming code. The table 6 shows the values of over-
head bits for both methods and the calculated percentage re-
duction of overhead bits in the proposed method. Comparison 
is done using Matlab plot shown in figure 7.  
 

TABLE 6 

COMPARISON TABLE 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig 7: Comparison Plot 

 

Data bits 
Par-
ity 
bits 

Overhead bits % re-
duc-
tion in 
over-
head 
bits 

Conven-
tional 
Hamming 
code 

Im-
proved 
Ham-
ming 
code 

4 4 19 13 31.57% 

8 5 37 27 27.02% 

16 6 69 57 17.39% 

32 7 138 123 10.87% 
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In figure 7, comparison of overhead bits in case of conven-
tional Hamming code and improved Hamming code is shown. 
Overhead bits are plotted against message width. Upper line 
indicates the overhead bits for conventional Hamming code 
and the lower line indicates the overhead bits for improved 
Hamming code.  

6 SIMULATION RESULTS  

The simulation result of encoder, decoder with no error, decoder 

with single error and decoder with double error are shown in 

figure 8 , figure 9, figure 10 and figure 11 respectively. The de-

signed IP core is further prototyped using Altera DE2 FPGA 

board[3].  

 

 

 

 

 

 

Fig 8: Simulation Result of Encoder 

 

Note on simulation result :  

Reset:(clk=1, reset=1, ready = z, enable = z, datain = zzzzzzzzzz, 

codeword_val = 0, codeword_out = zzzzzzzzzzzzzzzz) 

Encoding:(clk=1, reset=0, ready = 1, enable = 1, datain = 

1100110011, codeword_val = 1, codeword_out = 

0000111100110011) 

 

 

 

 

 

Fig 9: Simulation Result of Decoder-corrector with no error 

 

Note on simulation result :  

Reset:(clk=1, reset=1, en_decoder = z, codeword_in = 

zzzzzzzzzzzzzzzz, message_out = zzzzzzzzzz, message_val = 0, 

error_1bit = 0, error_2bit = 0) 

Decoding:( clk=1, reset=0, en_decoder = 1, codeword_in = 

0000111100110011, message_out = 1100110011, message_val = 1, 

error_1bit = 0, error_2bit = 0) 

 

 

 

 

 

 

Fig 10: Simulation Result of Decoder with single error 

 

Note on simulation result :  

Reset:(clk=1, reset=1, en_decoder = z, codeword_in = 

zzzzzzzzzzzzzzzz, message_out = zzzzzzzzzz, message_val = 0, 

error_1bit = 0, error_2bit = 0) 

Decoding:( clk=1, reset=0, en_decoder = 1, codeword_in = 

0000111100110111, message_ 

 

 

 

 

 

out = 1100110011, message_val = 1, error_1bit = 1, error_2bit = 0) 

 

 

Fig 11: Simulation Result of Decoder with double error 

 

Note on simulation result :  

Reset:(clk=1, reset=1, en_decoder = z, codeword_in = 

zzzzzzzzzzzzzzzz, message_out = zzzzzzzzzz, message_val = 0, 

error_1bit = 0, error_2bit = 0) 

Decoding:( clk=1, reset=0, en_decoder = 1, codeword_in = 

0000111100110000, message_out = 1100110000, message_val = 1, 

error_1bit = 0, error_2bit = 1) 

 
7  IMPLEMENTATION RESULTS 

 
The ECC IP core is tested by using Altera® DE2 FPGA board. 
Altera Quartus® II is used to synthesis the design. Signal Tap® 
II Logic Analyzer is used to take hardware test result from 
FPGA. Resource utilization summary is given in table 7 and 
power analysis summary is given in table 8.  

 
TABLE 7 

RESOURCE UTILIZATION TABLE 

 
Resource Utilization table summarizes usage statistics for re-

sources including logic elements, registers, I/O pins, memory 
blocks, interconnect usage, and fan-out. 

 
 
 
 

RESOURCE USAGE 

Estimated Total logic elements 180 

Total combinational functions 87 

Logic element usage by number of LUT 
inputs 

 

                 -- 4 input functions 24 

                 -- 3 input functions 6 

                 -- 2 input functions 57 

Logic elements by mode  

                 -- normal mode 87 

                 -- arithmetic mode 0 

Total registers 159 

                 -- Dedicated logic registers 159 

                 -- I/O registers 0 

I/O pins 60 

Maximum fan-out node clk 

Maximum fan-out 159 

Total fan-out 748 

Average fan-out 2.44 
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TABLE 8 

POWER ANALYSIS TABLE 

PARAMETER RESULT 

Total Thermal Power Dissipation 113.94  
mW 

Core Dynamic Thermal Power Dissipa-
tion 

0.00 mW 

Core Static Thermal Power Dissipation 79.94 mW 

I/O Thermal Power Dissipation 34.01 mW 

 
Power Analysis table gives details about the core dynamic 

thermal power dissipation, core static thermal power dissipa-
tion, I/O thermal power dissipation and total thermal power 
dissipation.  

 
Hardware test result is obtained from Signal Tap Logic Ana-

lyzer. Encoder and decoder-corrector is tested and the result is 
given in figure 12 and figure 13 respectively.  

 
 
 
 
 

 
 
 
 

Fig 12: Hardware Test Result of Encoder 

 
 
 
 
 
 
 
 

Codeword_in Data_out 

Dataout_

val 

 

Error1bit Error2bit 

0000111100110011 1100110011 1 0 0 

0000111100110000 1100110000 1 0 1 

0000111100110111 1100110011 1 1 0 

 
Fig 13: Hardware Test Result of Decoder-Corrector 

 
The hardware test results tabulated above are subjected to 

vis-à-vis comparison for the function table, for verifying com-
pliance.  

 
8  CONCLUSION 

 
This paper describes the design, simulation and characteriza-

tion of synthesizable ECC IP core using improved Hamming 
code. This eliminated the overhead of interspersing the redun-
dancy bits at the sender end and their removal at the receiver 
end. Further the effort needed in identifying the values of the 

redundancy bits is lower. The design was developed using Veri-
log HDL. The proposed design has been tested by implement-
ing the design on Altera DE2 board which uses Cyclone-II de-
vice. 
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1100110011 0000111100110011 1 
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